k-tree

Дисперсионный анализ

В примерах в данной статье данные генерятся при каждой загрузке страницы. Если Вы хотите посмотреть пример с другими значениями - обновите страницу .

ANOVA

ANOVA - это акроним от ANalysis Of VAriance (дисперсионный анализ). Дисперсионный анализ был введён Фишером - английским учёным, сделавшим огромный вклад в развитие науки. ANOVA в статистике - это мощный инструмент для определения влияния различных групп наблюдений между собой.

Пример

Предположим, Вы хотите эмпирическим методом провести исследование бензина на качество, для этого вы заправляете бак на одной заправке и проезжаете n километров, повторяете такой эксперимент, скажем, пять раз, затем проводите такой же эксперимент, только на другой заправке. У Вас два набора данных - заправка A и заправка B. Разумеется, цифры разбегаются, но всё же есть некоторая зависимость, так вот, что бы определить, влияет ли заправка на расход бензина (или данные не связаны между собой) Вы используете дисперсионный анализ.

Дисперсионный анализ позволяет определить какой из факторов влияет больше, внутригрупповой или межгрупповой. В примере выше Вы сможете определить, насколько влияет на расход бензина выбор заправки. В этом суть дисперсионного анализа: узнать, является ли выбранный фактор значимым для выбранных наблюдений.

В некотором смысле, дисперсионный анализ похож на регрессионный и корреляционный анализы, т.к. позволяет определить влияние переменных друг на друга.

Анализ

В теории, для анализа дисперсии выстраивается простая модель, схожая с изучаемой в анализе временых рядов.

Модель

Модель дисперсионного анализа включает в себя среднее значение, эффект эксперимента и случайную ошибку:

y = μ + τ + ε
τ - эффект эксперимента, ε - случайная ошибка

Однофакторный

Однофакторный дисперсионный анализ рассматривает влияние одного критерия, делается это так: мы проводим два эксперимента, в одном из них включаем дополнительный фактор и анализируем, внёс ли этот фактор изменения. В качестве исходных данных рассмотрим результаты ряда экспериментов:

NE1E2E3E4
1595613351
260328746
3463211050
4394610940
5485510447
μi50.444.2108.646.8
μ = (50.4 + 44.2 + 108.6 + 46.8) / 4 = 62.5
Квадрат ошибок внутри групп (Square Sum within group):
SSw = ΣiΣj(yij - μi)2 = 2038
Квадрат ошибок между группами (Square Sum between group):
SSb = Σii - μ)2 = 2853
Учитывая степени свободы, ожидаемое среднее:
MSw = SSw / a(n-1) = 135.87
MSb = SSb / a-1 = 713.25
Значение Fкрит :
F0 = MSb/MSw = 5.25

Тест Фишера: если значение F0 окажется больше чем значение F λ,4,15, значит фактор оказывает влияние.

Для n = 20 и a = 5, Fλ,n-a,a-1 = Fλ,15,4 = 5,86
Поскольку F0 = 5.25 < 5.86, то принимаем, что введённый фактор не оказал влияния на результаты эксперимента.

Двухфакторный

При двухфакторном анализе выдвигаются три гипотезы на проверку:

  • Факторы А и В не оказывают влияния на результат
  • Фактор А не оказывает влияния на результат
  • Фактор B не оказывает влияния на результат

Для проведения двухфакторного анализа необходимо составить группы результатов: несколько измерений для всех значения каждого из факторов, т.е.:

A1A2
B1X1a1,b1...XNa1,b1X1a1,b2...XNa1,b2
B2X1a1,b2...XNa1,b2X1a1,b2...XNa1,b2

Далее подсчитывается среднее значение для каждого значения факторов, т.е. среднее для A1, среднее для В1 и т.д. Затем подсчитывается общее среднее для всех результатов. Зададимся количеством критериев: k = 2 (количество критериев А) и m = 2 (количество критериев В).

T = ΣΣΣxijk
Сумма элементов под влиянием фактора A:
TAi = Σxi·k
Сумма элементов под влиянием фактора B:
TBj = Σx·jk
Сумма элементов под влиянием фактора AB:
TAiBj = Σxij·
SST = Σx2ijk - T2/N
SSA = ΣT2Ai/n·m - T2/N
SSB = ΣT2Bj/n·k - T2/N
SSAB = ΣΣT2AiBj/n - SSA - SSB - T2/N
SSE = ΣΣΣx2ijk - ΣΣT2AiBj/n

SST = SSA + SSB + SSAB + SSE

MSE = SSE/(n-1)·m·k
MSA = SSA/k-1
MSB = SSB/m-1
MSAB = SSAB/(m-1)·(k-1)
Тест "Критерий A не оказывает влияние на результат", ν1 = k-1:
FA = MSA/MSE
Тест "Критерий B не оказывает влияние на результат", ν1 = m-1:
FB = MSB/MSE
Тест "Критерии A и B не оказывают влияние на результат", ν1 = (k-1)(m-1):
Fint = MSAB/MSE

Для каждого F, если F > F α,ν12, то гипотеза отвергается. ν2 = N-mk

Многофакторный

Многофакторный анализ аналогичен двухфакторному - проводятся те же операции, но критерии группируются и итеративно находится влияние каждого из факторов.

С повторными измерениями

Дисперсионный анализ с повторными измерениями озночает, что для каждого критерия производилось несколько замеров случайной величины для получения более точного результата (поскольку в ANOVA) используется внутригрупповая сумма квадратов.

Применение

Дисперсионный анализ применяют в самых различных отраслях науки и производства тогда, когда необходимо изучить зависимость критериев на различие средних значений, при этом сравнивается не среднее значение, а разброс результатов вокруг среднего значения, т.е. дисперсию.

Решение задач

В качестве примера приведём задачу из метрологии. На заводе размещены пять станков, на которых производят валы. Необходимо определить, влияет ли выбор станка или подготовка работника на результат производства. Для анализа производят замеры для каждого станка и работника, в результате получается таблица:

Оператор 1
М1 30.363 30.351 30.504 30.327 30.398 30.341 30.449 30.579 30.463 30.346
М2 30.389 30.351 30.34 30.332 30.387 30.389 30.338 30.332 30.337 30.378
М3 30.249 30.295 30.245 30.26 30.11 30.133 30.291 30.206 30.219 30.295
М4 30.264 30.29 30.216 30.243 30.234 30.241 30.253 30.247 30.238 30.244
М5 30.363 30.397 30.343 30.366 30.392 30.3 30.335 30.367 30.376 30.338
Оператор 2
М1 30.398 30.306 30.35 30.304 30.354 30.308 30.397 30.311 30.31 30.327
М2 30.373 30.381 30.303 30.59 30.373 30.511 30.329 30.556 30.351 30.492
М3 30.266 30.262 30.201 30.234 30.254 30.212 30.201 30.234 30.249 30.216
М4 30.037 30.251 30.128 30.078 30.2 30.227 30.003 30.172 30.144 30.15
М5 30.471 30.473 30.787 30.976 30.392 30.54 30.369 30.474 30.971 30.835

Воспользуемся методом двухфакторного анализа, фактор А - оператор, фактор В - станок. Рассчитаем суммы квадратов, для этого необходимо рассчитать значение среднего для каждой из групп:

TTA1TA2 TB1TB2TB3TB4TB5
3033.675 1516.0441517.631 607.486 607.832 604.632 603.86 609.865
SSA = 0.025
SSB = 1.213
SSAB = 0.453
SSE = 0.797

MSA = 0.025
MSB = 0.303
MSAB = 0.113
MSE = 0.199

FA = 0.126
FB = 1.523
FAB = 0.568

Критические значения для теста Фишера:
Fcrit A = F0.1, 1, 90 = 2.77
Fcrit B = F0.1, 4, 90 = 2.01
Fcrit AB = F0.1, 4, 90 = 2.01

Таблица результатов:

Влияние станка на результат Да 0.126 < 2.77
Влияние квалификации работника на результат Да 1.523 < 2.01
Взаимное влияние квалификации работника и выбора станка на результат Да 0.568 < 2.01

В excel/Open Calc

Для решения дисперсионного анализа в электронной таблице Вам потребуются следующие формулы:

sumproduct Сумма произведений, используется для нахождения суммы квадратов
finv Обратное значение распределения F - критерий Фишера

Таблица для скачивания в форматах ods и xls.

Скачать статью в формате PDF.

Вам понравилась статья? Да / Нет

Просмотров: 323

5 4

Поиск по сайту:

Порекомендуйте статью своим друзьям:





© 2015-2018 - K-Tree.ru • Онлайн учебник
Копия материалов, размещённых на данном сайте, допускается только по письменному разрешению владельцев сайта.
По любым вопросам Вы можете связаться по почте info@k-tree.ru