k-tree

Дисперсионный анализ

В примерах в данной статье данные генерятся при каждой загрузке страницы. Если Вы хотите посмотреть пример с другими значениями - обновите страницу .

ANOVA

ANOVA - это акроним от ANalysis Of VAriance (дисперсионный анализ). Дисперсионный анализ был введён Фишером - английским учёным, сделавшим огромный вклад в развитие науки. ANOVA в статистике - это мощный инструмент для определения влияния различных групп наблюдений между собой.

Пример

Предположим, Вы хотите эмпирическим методом провести исследование бензина на качество, для этого вы заправляете бак на одной заправке и проезжаете n километров, повторяете такой эксперимент, скажем, пять раз, затем проводите такой же эксперимент, только на другой заправке. У Вас два набора данных - заправка A и заправка B. Разумеется, цифры разбегаются, но всё же есть некоторая зависимость, так вот, что бы определить, влияет ли заправка на расход бензина (или данные не связаны между собой) Вы используете дисперсионный анализ.

Дисперсионный анализ позволяет определить какой из факторов влияет больше, внутригрупповой или межгрупповой. В примере выше Вы сможете определить, насколько влияет на расход бензина выбор заправки. В этом суть дисперсионного анализа: узнать, является ли выбранный фактор значимым для выбранных наблюдений.

В некотором смысле, дисперсионный анализ похож на регрессионный и корреляционный анализы, т.к. позволяет определить влияние переменных друг на друга.

Анализ

В теории, для анализа дисперсии выстраивается простая модель, схожая с изучаемой в анализе временых рядов.

Модель

Модель дисперсионного анализа включает в себя среднее значение, эффект эксперимента и случайную ошибку:

y = μ + τ + ε
τ - эффект эксперимента, ε - случайная ошибка

Однофакторный

Однофакторный дисперсионный анализ рассматривает влияние одного критерия, делается это так: мы проводим два эксперимента, в одном из них включаем дополнительный фактор и анализируем, внёс ли этот фактор изменения. В качестве исходных данных рассмотрим результаты ряда экспериментов:

NE1E2E3E4
1573612932
2473913339
355458852
434589047
549478951
μi48.445105.844.2
μ = (48.4 + 45 + 105.8 + 44.2) / 4 = 60.85
Квадрат ошибок внутри групп (Square Sum within group):
SSw = ΣiΣj(yij - μi)2 = 3034.8
Квадрат ошибок между группами (Square Sum between group):
SSb = Σii - μ)2 = 2703.95
Учитывая степени свободы, ожидаемое среднее:
MSw = SSw / a(n-1) = 202.32
MSb = SSb / a-1 = 675.99
Значение Fкрит :
F0 = MSb/MSw = 3.341

Тест Фишера: если значение F0 окажется больше чем значение F λ,4,15, значит фактор оказывает влияние.

Для n = 20 и a = 5, Fλ,n-a,a-1 = Fλ,15,4 = 5,86
Поскольку F0 = 3.341 < 5.86, то принимаем, что введённый фактор не оказал влияния на результаты эксперимента.

Двухфакторный

При двухфакторном анализе выдвигаются три гипотезы на проверку:

  • Факторы А и В не оказывают влияния на результат
  • Фактор А не оказывает влияния на результат
  • Фактор B не оказывает влияния на результат

Для проведения двухфакторного анализа необходимо составить группы результатов: несколько измерений для всех значения каждого из факторов, т.е.:

A1A2
B1X1a1,b1...XNa1,b1X1a1,b2...XNa1,b2
B2X1a1,b2...XNa1,b2X1a1,b2...XNa1,b2

Далее подсчитывается среднее значение для каждого значения факторов, т.е. среднее для A1, среднее для В1 и т.д. Затем подсчитывается общее среднее для всех результатов. Зададимся количеством критериев: k = 2 (количество критериев А) и m = 2 (количество критериев В).

T = ΣΣΣxijk
Сумма элементов под влиянием фактора A:
TAi = Σxi·k
Сумма элементов под влиянием фактора B:
TBj = Σx·jk
Сумма элементов под влиянием фактора AB:
TAiBj = Σxij·
SST = Σx2ijk - T2/N
SSA = ΣT2Ai/n·m - T2/N
SSB = ΣT2Bj/n·k - T2/N
SSAB = ΣΣT2AiBj/n - SSA - SSB - T2/N
SSE = ΣΣΣx2ijk - ΣΣT2AiBj/n

SST = SSA + SSB + SSAB + SSE

MSE = SSE/(n-1)·m·k
MSA = SSA/k-1
MSB = SSB/m-1
MSAB = SSAB/(m-1)·(k-1)
Тест "Критерий A не оказывает влияние на результат", ν1 = k-1:
FA = MSA/MSE
Тест "Критерий B не оказывает влияние на результат", ν1 = m-1:
FB = MSB/MSE
Тест "Критерии A и B не оказывают влияние на результат", ν1 = (k-1)(m-1):
Fint = MSAB/MSE

Для каждого F, если F > F α,ν12, то гипотеза отвергается. ν2 = N-mk

Многофакторный

Многофакторный анализ аналогичен двухфакторному - проводятся те же операции, но критерии группируются и итеративно находится влияние каждого из факторов.

С повторными измерениями

Дисперсионный анализ с повторными измерениями озночает, что для каждого критерия производилось несколько замеров случайной величины для получения более точного результата (поскольку в ANOVA) используется внутригрупповая сумма квадратов.

Применение

Дисперсионный анализ применяют в самых различных отраслях науки и производства тогда, когда необходимо изучить зависимость критериев на различие средних значений, при этом сравнивается не среднее значение, а разброс результатов вокруг среднего значения, т.е. дисперсию.

Решение задач

В качестве примера приведём задачу из метрологии. На заводе размещены пять станков, на которых производят валы. Необходимо определить, влияет ли выбор станка или подготовка работника на результат производства. Для анализа производят замеры для каждого станка и работника, в результате получается таблица:

Оператор 1
М1 30.327 30.34 30.366 30.32 30.379 30.387 30.395 30.326 30.375 30.316
М2 30.34 30.373 30.304 30.323 30.323 30.33 30.395 30.338 30.323 30.323
М3 30.535 30.859 30.96 30.642 31.17 31.228 31.04 30.831 30.43 30.823
М4 30.314 30.324 30.388 30.398 30.398 30.327 30.37 30.301 30.35 30.394
М5 30.3 30.3 30.3 30.3 30.3 30.3 30.3 30.3 30.3 30.3
Оператор 2
М1 30.32 30.311 30.378 30.328 30.39 30.392 30.352 30.377 30.39 30.35
М2 30.354 30.354 30.384 30.4 30.386 30.339 30.368 30.313 30.381 30.316
М3 30.051 29.985 30.114 30.253 30.295 30.014 30.194 29.908 29.874 30.244
М4 30.48 30.564 30.578 30.358 30.418 30.44 30.519 30.37 30.438 30.476
М5 30.343 30.33 30.336 30.321 30.361 30.387 30.385 30.399 30.396 30.386

Воспользуемся методом двухфакторного анализа, фактор А - оператор, фактор В - станок. Рассчитаем суммы квадратов, для этого необходимо рассчитать значение среднего для каждой из групп:

TTA1TA2 TB1TB2TB3TB4TB5
3038.385 1521.9851516.4 607.119 606.967 609.45 608.205 606.644
SSA = 0.312
SSB = 0.265
SSAB = 2.647
SSE = 0.917

MSA = 0.312
MSB = 0.066
MSAB = 0.662
MSE = 0.229

FA = 1.362
FB = 0.288
FAB = 2.891

Критические значения для теста Фишера:
Fcrit A = F0.1, 1, 90 = 2.77
Fcrit B = F0.1, 4, 90 = 2.01
Fcrit AB = F0.1, 4, 90 = 2.01

Таблица результатов:

Влияние станка на результат Да 1.362 < 2.77
Влияние квалификации работника на результат Да 0.288 < 2.01
Взаимное влияние квалификации работника и выбора станка на результат Нет 2.891 > 2.01

В excel/Open Calc

Для решения дисперсионного анализа в электронной таблице Вам потребуются следующие формулы:

sumproduct Сумма произведений, используется для нахождения суммы квадратов
finv Обратное значение распределения F - критерий Фишера

Таблица для скачивания в форматах ods и xls.

Скачать статью в формате PDF.

Вам понравилась статья? Да / Нет

Поиск по сайту:

Порекомендуйте статью своим друзьям:




Анализ данных

1. Нормальное распределение

Любой процесс можно описать нормальным распределением

2. Распределение Пуассона

Второе по популярности распределение

3. Закон распределения

Как структурировать данные полученные в ходе статистического исследования

4. Параметры дискретного закона распределения

Критерии для сравнения распределений

5. Статистическая гипотеза

Статистическая гипотеза. Проверка утверждений. Общие вопросы

6. Дисперсионный анализ

ANOVA

Прогнозирование




© 2015-2018 - K-Tree.ru • Онлайн учебник
Копия материалов, размещённых на данном сайте, допускается только по письменному разрешению владельцев сайта.
По любым вопросам Вы можете связаться по почте info@k-tree.ru