k-tree

Неопределённость измерений

Неопределённость

Неопределённость измерения типа А

К неопределённостям типа А относят любые неопределённости, которые, по своей природе, могут быть посчитаны только статистически. Результатом подсчёта является закон распределения p(q), для которого выполняются условия:

+∞-∞ p(q)dq = 1
μq = ∫+∞-∞qp(q)dq
σ2q = ∫+∞-∞ (q-μq)2p(q)dq

Статистические оценки

Статистическая оценка среднего значения μq при n замеров в одинаковых условиях:
q = 1/n Σnk=1 qk (1)
Экспериментальная дисперсия - статистическая оценка дисперсии σ2:
s2(qk) = 1/(n-1) Σnj=1 (qj - q)2 (2)
Статистическая оценка дисперсии среднего значения σ(q)2 = σ2/n:
s2(q) = s2(qk)/n (3)

Значение неопределённости

Неопределённость u(xi) статистической оценки среднего значения n замеров величины Xi равна s(Xi) (формула 3).

Степень свободы vi для значения u(xi), равная n-1 (n - количество измерений величины xi) обязательно указывается в документации к определению неопределённости типа А.

Среднее значение неопределённости

Статистическая оценка искомой величины Y, обозначаемая y, рассчитывается основываясь на статистических оценках величин x1, x2, ..., xn: y = f(x1, x2, ..., xn). Иногда предпочтительнее рассчитать статистическую оценку Y по формуле:

y = Y = 1/n Σnk=1Yk = 1/n Σnk=1f(X1,k, X2,k, ..., Xn,k)

Пример расчет неопределенности по типу А

Сложность расчёта неопределённости типа А заключается в правильном выборе метода статистического анализа, так, например, статистическая оценка дисперсии может быть получена по формуле математического ожидания, либо вычислена посредством апроксимации закона распределения к нормальному распределению с последующим выбором доверительного интервала.

Рассмотрим пример замера диаметра цилиндра, номинальным диаметром 25.45см с помощью микрометра.

Номер замераРезультат замера
125.446
225.301
325.398
425.409
525.449
625.551
725.435
825.312
925.349
1025.317
1125.565
1225.404
1325.332
1425.495
1525.487
1625.430
1725.452
1825.532
1925.350
2025.343
2125.566
2225.597
2325.358
2425.360
2525.398
2625.395
2725.418
2825.372
2925.383
3025.538
3125.535
3225.449
3325.401
3425.461
3525.391
3625.509
3725.401
3825.458
3925.588
4025.377
Таблица 1. Результат замера диаметра цилиндра с помощью микрометра

Статистическая оценка среднего значения 40 независимых измерений легче всего определяется как среднее арифметическое, по формуле:

q = 1/n (Σnk=1qk)
q = (25.446 + 25.301 + ... + 25.377) / 40 = 25.433

Статистическая оценка дисперсии генеральной совокупности:

s2(qk) = 1/(n-1) Σnj=1(qj - q)2
s2(qk) = [(25.446 - 25.433)2 + (25.301 - 25.433)2 + ... + (25.377 - 25.433)2] / 39 = 0.007

Мы получили статистическую оценку дисперсии и значение σ = √s2 - экспериментальное значение стандартного отклонения.

Наилучшей статистической оценкой стандартного отклонения среднего значения является σ2(q) = σ2/n, которую мы получим по формуле стандартной ошибки:

s2(q) = s2(qk)/n
s2(q) = 0.007 / 40 = 0.000175

Данное значение, s2(q), описывает интервал, в котором ожидается значение μq.

Таким образом, для величины диаметра, полученного в результате 40 независимых измерений, неопределённость типа А среднего значения является u(q) = s(q):

uA(q) = 0.013229

Важно!

Данный пример является простым и не может применяться как общий случай для поиска неопределённости типа А в случаях со сложными моделями измерений. Во многих случаях, результатом измерения является сложная модель калибровки, например, основанная на методе наименьших квадратов. В таких случаях необходимо производить статистический анализ измерений. Для величин, зависимых от нескольких переменных, используется дисперсионный анализ.

Неопределённость типа А в эксель

Скачать: Неопределённость_А.xls

Реализация в эксель очень проста, здесь потребуется только формулы СУММ и КОРЕНЬ. Параметры рассчитываются как в примере выше:

  • Статистическая оценка среднего значения - отношение суммы результатов к их количеству
  • Статистическая оценка дисперсии генеральной совокупности - по формуле q = 1/n (Σnk=1qk)
  • Стандартное отклонение среднего значения, sq - отношение дисперсии к количеству результатов минус один
  • Стандартная неопределённость типа А - корень из стандартного отклонения среднего значения

Неопределённость измерения типа Б

Величины Xi, для которых статистическая оценка была получена не посредством измерений, а на основе некоторой научной информации, называется неопределённостью типа Б. Прмером такой информации может послужить: данные предыдущих измерений, опыт, спецификация производителя, данные калибровки, информация из справочников и другие источники априорных значений.

Правильное определение неопределённости типа Б основывается только на опыте и общем понимании процесса измерения. Неопределённость типа Б может быть также информативна как и неопределённость типа А исключительно в ситуациях, когда неопределённость типа А основывается на относительно малом количестве независимых измерений.

Примеры неопределённости типа Б

Неопределённость типа Б - это общее понятие, поэтому количество примеров может быть неограниченным, но общая идея - это интервал, например, "Доверительный интервал с уровнем доверия 82%", или "Неопределённость в пределах трёх стандартных отклонениях".

Пример 1. Неопределённость в стандартных отклонениях

В сертификате о калибровке указано, что действительное значение массы образца из нержавеющей стали, номинальным весом 1 кг, равно 1000,000325 г и "Неопределённость массы равна 240 мкг в пределах трёх стандартных отклонениях".

Таким образом, стандартная неопределённость: u = 240 мкг/3 = 80 мкг. Ожидаемая дисперсия: u2 = (80 мкг)2 = 6,4 • 10-9 г2.

Пример 2. Неопределённость в доверительном интервале

В сертификате о калибровке указано, что сопротивление образца Rs, с номинальным сопротивлением 10 Ом, равно 10,000742 Ом ± 129 мкОм и неопределённость 129 мкОм покрывает доверительный интервал с уровнем доверия 99%.

Стандартная неопределённость u(Rs) = (129 мкОм)/2,58 = 50 мкОм (про число 2,58 и доверительный интервал описано в статье). Относительная неопределённость u(Rs)/Rs = 5,0 • 10-6. Ожидаемая дисперсия: u2(Rs) = (50 мкОм)2 = 2,5 • 10 -9 Ом2.

Скачать статью в формате PDF.

Следующая статья - Суммарная неопределённость.

Вам понравилась статья? Да / Нет

Просмотров: 5 771

5 25

Поиск по сайту:

Порекомендуйте статью своим друзьям:





© 2015-2018 - K-Tree.ru • Онлайн учебник
Копия материалов, размещённых на данном сайте, допускается только по письменному разрешению владельцев сайта.
По любым вопросам Вы можете связаться по почте info@k-tree.ru