k-tree

Неопределённость измерений

Неопределённость

Неопределённость измерения типа А

К неопределённостям типа А относят любые неопределённости, которые, по своей природе, могут быть посчитаны только статистически. Результатом подсчёта является закон распределения p(q), для которого выполняются условия:

+∞-∞ p(q)dq = 1
μq = ∫+∞-∞qp(q)dq
σ2q = ∫+∞-∞ (q-μq)2p(q)dq

Статистические оценки

Статистическая оценка среднего значения μq при n замеров в одинаковых условиях:
q = 1/n Σnk=1 qk (1)
Экспериментальная дисперсия - статистическая оценка дисперсии σ2:
s2(qk) = 1/(n-1) Σnj=1 (qj - q)2 (2)
Статистическая оценка дисперсии среднего значения σ(q)2 = σ2/n:
s2(q) = s2(qk)/n (3)

Значение неопределённости

Неопределённость u(xi) статистической оценки среднего значения n замеров величины Xi равна s(Xi) (формула 3).

Степень свободы vi для значения u(xi), равная n-1 (n - количество измерений величины xi) обязательно указывается в документации к определению неопределённости типа А.

Среднее значение неопределённости

Статистическая оценка искомой величины Y, обозначаемая y, рассчитывается основываясь на статистических оценках величин x1, x2, ..., xn: y = f(x1, x2, ..., xn). Иногда предпочтительнее рассчитать статистическую оценку Y по формуле:

y = Y = 1/n Σnk=1Yk = 1/n Σnk=1f(X1,k, X2,k, ..., Xn,k)

Пример расчет неопределенности по типу А

Сложность расчёта неопределённости типа А заключается в правильном выборе метода статистического анализа, так, например, статистическая оценка дисперсии может быть получена по формуле математического ожидания, либо вычислена посредством апроксимации закона распределения к нормальному распределению с последующим выбором доверительного интервала.

Рассмотрим пример замера диаметра цилиндра, номинальным диаметром 23.5см с помощью микрометра.

Номер замераРезультат замера
123.799
223.899
323.194
423.543
523.148
623.483
723.409
823.592
923.251
1023.513
1123.652
1223.531
1323.842
1423.483
1523.781
1623.417
1723.303
1823.533
1923.590
2023.240
2123.558
2223.120
2323.519
2423.813
2523.410
2623.353
2723.734
2823.710
2923.291
3023.576
3123.364
3223.324
3323.468
3423.211
3523.634
3623.382
3723.282
3823.391
3923.772
4023.465
4123.400
4223.421
4323.503
4423.256
4523.130
4623.131
4723.867
Таблица 1. Результат замера диаметра цилиндра с помощью микрометра

Статистическая оценка среднего значения 47 независимых измерений легче всего определяется как среднее арифметическое, по формуле:

q = 1/n (Σnk=1qk)
q = (23.799 + 23.899 + ... + 23.867) / 47 = 23.474

Статистическая оценка дисперсии генеральной совокупности:

s2(qk) = 1/(n-1) Σnj=1(qj - q)2
s2(qk) = [(23.799 - 23.474)2 + (23.899 - 23.474)2 + ... + (23.867 - 23.474)2] / 46 = 0.045

Мы получили статистическую оценку дисперсии и значение σ = √s2 - экспериментальное значение стандартного отклонения.

Наилучшей статистической оценкой стандартного отклонения среднего значения является σ2(q) = σ2/n, которую мы получим по формуле стандартной ошибки:

s2(q) = s2(qk)/n
s2(q) = 0.045 / 47 = 0.000957

Данное значение, s2(q), описывает интервал, в котором ожидается значение μq.

Таким образом, для величины диаметра, полученного в результате 47 независимых измерений, неопределённость типа А среднего значения является u(q) = s(q):

uA(q) = 0.030935

Важно!

Данный пример является простым и не может применяться как общий случай для поиска неопределённости типа А в случаях со сложными моделями измерений. Во многих случаях, результатом измерения является сложная модель калибровки, например, основанная на методе наименьших квадратов. В таких случаях необходимо производить статистический анализ измерений. Для величин, зависимых от нескольких переменных, используется дисперсионный анализ (ANOVA).

Неопределённость типа А в эксель

Скачать: Неопределённость_А.xls

Реализация в эксель очень проста, здесь потребуется только формулы СУММ и КОРЕНЬ. Параметры рассчитываются как в примере выше:

  • Статистическая оценка среднего значения - отношение суммы результатов к их количеству
  • Статистическая оценка дисперсии генеральной совокупности - по формуле q = 1/n (Σnk=1qk)
  • Стандартное отклонение среднего значения, sq - отношение дисперсии к количеству результатов минус один
  • Стандартная неопределённость типа А - корень из стандартного отклонения среднего значения

Неопределённость измерения типа Б

Величины Xi, для которых статистическая оценка была получена не посредством измерений, а на основе некоторой научной информации, называется неопределённостью типа Б. Прмером такой информации может послужить: данные предыдущих измерений, опыт, спецификация производителя, данные калибровки, информация из справочников и другие источники априорных значений.

Правильное определение неопределённости типа Б основывается только на опыте и общем понимании процесса измерения. Неопределённость типа Б может быть также информативна как и неопределённость типа А исключительно в ситуациях, когда неопределённость типа А основывается на относительно малом количестве независимых измерений.

Примеры неопределённости типа Б

Неопределённость типа Б - это общее понятие, поэтому количество примеров может быть неограниченным, но общая идея - это интервал, например, "Доверительный интервал с уровнем доверия 82%", или "Неопределённость в пределах трёх стандартных отклонениях".

Пример 1. Неопределённость в стандартных отклонениях

В сертификате о калибровке указано, что действительное значение массы образца из нержавеющей стали, номинальным весом 1 кг, равно 1000,000325 г и "Неопределённость массы равна 240 мкг в пределах трёх стандартных отклонениях".

Таким образом, стандартная неопределённость: u = 240 мкг/3 = 80 мкг. Ожидаемая дисперсия: u2 = (80 мкг)2 = 6,4 • 10-9 г2.

Пример 2. Неопределённость в доверительном интервале

В сертификате о калибровке указано, что сопротивление образца Rs, с номинальным сопротивлением 10 Ом, равно 10,000742 Ом ± 129 мкОм и неопределённость 129 мкОм покрывает доверительный интервал с уровнем доверия 99%.

Стандартная неопределённость u(Rs) = (129 мкОм)/2,58 = 50 мкОм (про число 2,58 и доверительный интервал описано в статье). Относительная неопределённость u(Rs)/Rs = 5,0 • 10-6. Ожидаемая дисперсия: u2(Rs) = (50 мкОм)2 = 2,5 • 10 -9 Ом2.

Скачать статью в формате PDF.

Вам понравилась статья? Да / Нет

Просмотров: 6 521

5 25



© 2015-2018 - K-Tree.ru • Онлайн учебник
Копия материалов, размещённых на данном сайте, допускается только по письменному разрешению владельцев сайта.
По любым вопросам Вы можете связаться по почте info@k-tree.ru