k-tree
биология

Неопределённость измерений

Неопределённость

Неопределённость измерения типа А

К неопределённостям типа А относят любые неопределённости, которые, по своей природе, могут быть посчитаны только статистически. Результатом подсчёта является закон распределения p(q), для которого выполняются условия:

+∞-∞ p(q)dq = 1
μq = ∫+∞-∞qp(q)dq
σ2q = ∫+∞-∞ (q-μq)2p(q)dq

Статистические оценки

Статистическая оценка среднего значения μq при n замеров в одинаковых условиях:
q = 1/n Σnk=1 qk (1)
Экспериментальная дисперсия - статистическая оценка дисперсии σ2:
s2(qk) = 1/(n-1) Σnj=1 (qj - q)2 (2)
Статистическая оценка дисперсии среднего значения σ(q)2 = σ2/n:
s2(q) = s2(qk)/n (3)

Значение неопределённости

Неопределённость u(xi) статистической оценки среднего значения n замеров величины Xi равна s(Xi) (формула 3).

Степень свободы vi для значения u(xi), равная n-1 (n - количество измерений величины xi) обязательно указывается в документации к определению неопределённости типа А.

Среднее значение неопределённости

Статистическая оценка искомой величины Y, обозначаемая y, рассчитывается основываясь на статистических оценках величин x1, x2, ..., xn: y = f(x1, x2, ..., xn). Иногда предпочтительнее рассчитать статистическую оценку Y по формуле:

y = Y = 1/n Σnk=1Yk = 1/n Σnk=1f(X1,k, X2,k, ..., Xn,k)

Пример расчет неопределенности по типу А

Сложность расчёта неопределённости типа А заключается в правильном выборе метода статистического анализа, так, например, статистическая оценка дисперсии может быть получена по формуле математического ожидания, либо вычислена посредством апроксимации закона распределения к нормальному распределению с последующим выбором доверительного интервала.

Рассмотрим пример замера диаметра цилиндра, номинальным диаметром 30.5см с помощью микрометра.

Номер замераРезультат замера
130.661
230.461
330.644
430.345
530.467
630.664
730.523
830.335
930.647
1030.562
1130.366
1230.473
1330.370
1430.329
1530.544
1630.355
1730.482
1830.549
1930.673
2030.674
2130.681
2230.454
2330.606
2430.440
2530.451
2630.676
2730.572
2830.492
2930.437
3030.466
3130.468
3230.436
3330.483
3430.488
3530.407
3630.677
3730.354
3830.637
3930.476
4030.596
4130.318
Таблица 1. Результат замера диаметра цилиндра с помощью микрометра

Статистическая оценка среднего значения 41 независимого измерения легче всего определяется как среднее арифметическое, по формуле:

q = 1/n (Σnk=1qk)
q = (30.661 + 30.461 + ... + 30.318) / 41 = 30.506

Статистическая оценка дисперсии генеральной совокупности:

s2(qk) = 1/(n-1) Σnj=1(qj - q)2
s2(qk) = [(30.661 - 30.506)2 + (30.461 - 30.506)2 + ... + (30.318 - 30.506)2] / 40 = 0.013

Мы получили статистическую оценку дисперсии и значение σ = √s2 - экспериментальное значение стандартного отклонения.

Наилучшей статистической оценкой стандартного отклонения среднего значения является σ2(q) = σ2/n, которую мы получим по формуле стандартной ошибки:

s2(q) = s2(qk)/n
s2(q) = 0.013 / 41 = 0.000317

Данное значение, s2(q), описывает интервал, в котором ожидается значение μq.

Таким образом, для величины диаметра, полученного в результате 41 независимого измерения, неопределённость типа А среднего значения является u(q) = s(q):

uA(q) = 0.017804

Важно!

Данный пример является простым и не может применяться как общий случай для поиска неопределённости типа А в случаях со сложными моделями измерений. Во многих случаях, результатом измерения является сложная модель калибровки, например, основанная на методе наименьших квадратов. В таких случаях необходимо производить статистический анализ измерений. Для величин, зависимых от нескольких переменных, используется дисперсионный анализ (ANOVA).

Неопределённость типа А в эксель

Скачать: Неопределённость_А.xls

Реализация в эксель очень проста, здесь потребуется только формулы СУММ и КОРЕНЬ. Параметры рассчитываются как в примере выше:

  • Статистическая оценка среднего значения - отношение суммы результатов к их количеству
  • Статистическая оценка дисперсии генеральной совокупности - по формуле q = 1/n (Σnk=1qk)
  • Стандартное отклонение среднего значения, sq - отношение дисперсии к количеству результатов минус один
  • Стандартная неопределённость типа А - корень из стандартного отклонения среднего значения

Неопределённость измерения типа Б

Величины Xi, для которых статистическая оценка была получена не посредством измерений, а на основе некоторой научной информации, называется неопределённостью типа Б. Прмером такой информации может послужить: данные предыдущих измерений, опыт, спецификация производителя, данные калибровки, информация из справочников и другие источники априорных значений.

Правильное определение неопределённости типа Б основывается только на опыте и общем понимании процесса измерения. Неопределённость типа Б может быть также информативна как и неопределённость типа А исключительно в ситуациях, когда неопределённость типа А основывается на относительно малом количестве независимых измерений.

Примеры неопределённости типа Б

Неопределённость типа Б - это общее понятие, поэтому количество примеров может быть неограниченным, но общая идея - это интервал, например, "Доверительный интервал с уровнем доверия 82%", или "Неопределённость в пределах трёх стандартных отклонениях".

Пример 1. Неопределённость в стандартных отклонениях

В сертификате о калибровке указано, что действительное значение массы образца из нержавеющей стали, номинальным весом 1 кг, равно 1000,000325 г и "Неопределённость массы равна 240 мкг в пределах трёх стандартных отклонениях".

Таким образом, стандартная неопределённость: u = 240 мкг/3 = 80 мкг. Ожидаемая дисперсия: u2 = (80 мкг)2 = 6,4 • 10-9 г2.

Пример 2. Неопределённость в доверительном интервале

В сертификате о калибровке указано, что сопротивление образца Rs, с номинальным сопротивлением 10 Ом, равно 10,000742 Ом ± 129 мкОм и неопределённость 129 мкОм покрывает доверительный интервал с уровнем доверия 99%.

Стандартная неопределённость u(Rs) = (129 мкОм)/2,58 = 50 мкОм (про число 2,58 и доверительный интервал описано в статье). Относительная неопределённость u(Rs)/Rs = 5,0 • 10-6. Ожидаемая дисперсия: u2(Rs) = (50 мкОм)2 = 2,5 • 10 -9 Ом2.

Скачать статью в формате PDF.

Вам понравилась статья? Да / Нет

Просмотров: 23 201

5 44