k-tree
Электронный учебник

Дисперсионный анализ

В примерах в данной статье данные генерятся при каждой загрузке страницы. Если Вы хотите посмотреть пример с другими значениями -обновите страницу .

ANOVA

ANOVA в статистике - это мощный инструмент для определения влияния различных групп наблюдений между собой. Дисперсионный анализ был введён Фишером - английским учёным, сделавшим огромный вклад в развитие науки. ANOVA - это акроним от ANalysis Of VAriance (дисперсионный анализ).

Пример

Предположим, Вы хотите эмпирическим методом провести исследование бензина на качество, для этого вы заправляете бак на одной заправке и проезжаете n километров, повторяете такой эксперимент, скажем, пять раз, затем проводите такой же эксперимент, только на другой заправке. У Вас два набора данных - заправка A и заправка B. Разумеется, цифры разбегаются, но всё же есть некоторая зависимость, так вот, что бы определить, влияет ли заправка на расход бензина (или данные не связаны между собой) Вы используете дисперсионный анализ.

Дисперсионный анализ позволяет определить какой из факторов влияет больше, внутригрупповой или межгрупповой. В примере выше Вы сможете определить, насколько влияет на расход бензина выбор заправки. В этом суть дисперсионного анализа: узнать, является ли выбранный фактор значимым для выбранных наблюдений.

В некотором смысле, дисперсионный анализ похож на регрессионный и корреляционный анализы, т.к. позволяет определить влияние переменных друг на друга.

Анализ

В теории, для анализа дисперсии выстраивается простая модель, схожая с изучаемой в анализе временых рядов.

Модель

Модель дисперсионного анализа включает в себя среднее значение, эффект эксперимента и случайную ошибку:

y = μ + τ + ε
τ - эффект эксперимента, ε - случайная ошибка

Однофакторный

Однофакторный дисперсионный анализ рассматривает влияние одного критерия, делается это так: мы проводим два эксперимента, в одном из них включаем дополнительный фактор и анализируем, внёс ли этот фактор изменения. В качестве исходных данных рассмотрим результаты ряда экспериментов:

NE1E2E3E4
147579447
2523410632
3343310453
4495212752
556307347
μi47.641.2100.846.2
μ = (47.6 + 41.2 + 100.8 + 46.2) / 4 = 58.95
Квадрат ошибок внутри групп (Square Sum within group):
SSw = ΣiΣj(yij - μi)2 = 2713.6
Квадрат ошибок между группами (Square Sum between group):
SSb = Σii - μ)2 = 2357.87
Учитывая степени свободы, ожидаемое среднее:
MSw = SSw / a(n-1) = 180.91
MSb = SSb / a-1 = 589.47
Значение Fкрит :
F0 = MSb/MSw = 3.258

Тест Фишера: если значение F0 окажется больше чем значение F λ,4,15, значит фактор оказывает влияние.

Для n = 20 и a = 5, Fλ,n-a,a-1 = Fλ,15,4 = 5,86
Поскольку F0 = 3.258 < 5.86, то принимаем, что введённый фактор не оказал влияния на результаты эксперимента.

Двухфакторный

При двухфакторном анализе выдвигаются три гипотезы на проверку:

  • Факторы А и В не оказывают влияния на результат
  • Фактор А не оказывает влияния на результат
  • Фактор B не оказывает влияния на результат

Для проведения двухфакторного анализа необходимо составить группы результатов: несколько измерений для всех значения каждого из факторов, т.е.:

A1A2
B1X1a1,b1...XNa1,b1X1a1,b2...XNa1,b2
B2X1a1,b2...XNa1,b2X1a1,b2...XNa1,b2

Далее подсчитывается среднее значение для каждого значения факторов, т.е. среднее для A1, среднее для В1 и т.д. Затем подсчитывается общее среднее для всех результатов. Зададимся количеством критериев: k = 2 (количество критериев А) и m = 2 (количество критериев В).

T = ΣΣΣxijk
Сумма элементов под влиянием фактора A:
TAi = Σxi·k
Сумма элементов под влиянием фактора B:
TBj = Σx·jk
Сумма элементов под влиянием фактора AB:
TAiBj = Σxij·
SST = Σx2ijk - T2/N
SSA = ΣT2Ai/n·m - T2/N
SSB = ΣT2Bj/n·k - T2/N
SSAB = ΣΣT2AiBj/n - SSA - SSB - T2/N
SSE = ΣΣΣx2ijk - ΣΣT2AiBj/n

SST = SSA + SSB + SSAB + SSE

MSE = SSE/(n-1)·m·k
MSA = SSA/k-1
MSB = SSB/m-1
MSAB = SSAB/(m-1)·(k-1)
Тест "Критерий A не оказывает влияние на результат", ν1 = k-1:
FA = MSA/MSE
Тест "Критерий B не оказывает влияние на результат", ν1 = m-1:
FB = MSB/MSE
Тест "Критерии A и B не оказывают влияние на результат", ν1 = (k-1)(m-1):
Fint = MSAB/MSE

Для каждого F, если F > F α,ν12, то гипотеза отвергается. ν2 = N-mk

Многофакторный

Многофакторный анализ аналогичен двухфакторному - проводятся те же операции, но критерии группируются и итеративно находится влияние каждого из факторов.

С повторными измерениями

Дисперсионный анализ с повторными измерениями озночает, что для каждого критерия производилось несколько замеров случайной величины для получения более точного результата (поскольку в ANOVA) используется внутригрупповая сумма квадратов.

Применение

Дисперсионный анализ применяют в самых различных отраслях науки и производства тогда, когда необходимо изучить зависимость критериев на различие средних значений, при этом сравнивается не среднее значение, а разброс результатов вокруг среднего значения, т.е. дисперсию.

Решение задач

В качестве примера приведём задачу из метрологии. На заводе размещены пять станков, на которых производят валы. Необходимо определить, влияет ли выбор станка или подготовка работника на результат производства. Для анализа производят замеры для каждого станка и работника, в результате получается таблица:

Оператор 1
М1 30.333 30.698 30.76 30.463 30.383 30.527 30.639 30.67 30.314 30.568
М2 29.833 29.949 30.177 29.89 30.245 30.137 30.113 30.245 30.282 29.84
М3 30.324 30.493 30.733 30.73 30.318 30.536 30.67 30.629 30.697 30.571
М4 30.626 30.568 30.751 30.423 30.73 30.3 30.358 30.303 30.59 30.791
М5 29.853 30.099 29.652 30.266 29.614 29.768 29.599 29.773 29.701 30.282
Оператор 2
М1 29.966 30.236 30.299 30.254 29.949 30.097 29.869 30.151 30.295 29.973
М2 30.317 30.334 30.302 30.392 30.327 30.382 30.331 30.344 30.304 30.328
М3 30.863 30.832 30.782 30.313 30.935 30.852 30.68 30.859 30.847 30.56
М4 30.929 30.412 30.638 30.964 30.891 30.806 30.891 30.578 30.546 30.63
М5 30.371 30.304 30.341 30.355 30.351 30.346 30.31 30.373 30.312 30.311

Воспользуемся методом двухфакторного анализа, фактор А - оператор, фактор В - станок. Рассчитаем суммы квадратов, для этого необходимо рассчитать значение среднего для каждой из групп:

TTA1TA2 TB1TB2TB3TB4TB5
3038.446 1515.8141522.632 606.444 604.072 613.224 612.725 601.981
SSA = 0.465
SSB = 5.161
SSAB = 2.268
SSE = 2.539

MSA = 0.465
MSB = 1.29
MSAB = 0.567
MSE = 0.635

FA = 0.732
FB = 2.031
FAB = 0.893

Критические значения для теста Фишера:
Fcrit A = F0.1, 1, 90 = 2.77
Fcrit B = F0.1, 4, 90 = 2.01
Fcrit AB = F0.1, 4, 90 = 2.01

Таблица результатов:

Влияние станка на результат Да 0.732 < 2.77
Влияние квалификации работника на результат Нет 2.031 > 2.01
Взаимное влияние квалификации работника и выбора станка на результат Да 0.893 < 2.01

В excel/Open Calc

Для решения дисперсионного анализа в электронной таблице Вам потребуются следующие формулы:

sumproduct Сумма произведений, используется для нахождения суммы квадратов
finv Обратное значение распределения F - критерий Фишера

Таблица для скачивания в форматах ods и xls.

Скачать статью в формате PDF.

Вам понравилась статья? /

Seen: 13 524

Рейтинг: 5 (36 голосов)