k-tree
Электронный учебник

Дисперсионный анализ

В примерах в данной статье данные генерятся при каждой загрузке страницы. Если Вы хотите посмотреть пример с другими значениями -обновите страницу .

ANOVA

ANOVA в статистике - это мощный инструмент для определения влияния различных групп наблюдений между собой. Дисперсионный анализ был введён Фишером - английским учёным, сделавшим огромный вклад в развитие науки. ANOVA - это акроним от ANalysis Of VAriance (дисперсионный анализ).

Пример

Предположим, Вы хотите эмпирическим методом провести исследование бензина на качество, для этого вы заправляете бак на одной заправке и проезжаете n километров, повторяете такой эксперимент, скажем, пять раз, затем проводите такой же эксперимент, только на другой заправке. У Вас два набора данных - заправка A и заправка B. Разумеется, цифры разбегаются, но всё же есть некоторая зависимость, так вот, что бы определить, влияет ли заправка на расход бензина (или данные не связаны между собой) Вы используете дисперсионный анализ.

Дисперсионный анализ позволяет определить какой из факторов влияет больше, внутригрупповой или межгрупповой. В примере выше Вы сможете определить, насколько влияет на расход бензина выбор заправки. В этом суть дисперсионного анализа: узнать, является ли выбранный фактор значимым для выбранных наблюдений.

В некотором смысле, дисперсионный анализ похож на регрессионный и корреляционный анализы, т.к. позволяет определить влияние переменных друг на друга.

Анализ

В теории, для анализа дисперсии выстраивается простая модель, схожая с изучаемой в анализе временых рядов.

Модель

Модель дисперсионного анализа включает в себя среднее значение, эффект эксперимента и случайную ошибку:

y = μ + τ + ε
τ - эффект эксперимента, ε - случайная ошибка

Однофакторный

Однофакторный дисперсионный анализ рассматривает влияние одного критерия, делается это так: мы проводим два эксперимента, в одном из них включаем дополнительный фактор и анализируем, внёс ли этот фактор изменения. В качестве исходных данных рассмотрим результаты ряда экспериментов:

NE1E2E3E4
1493313030
2505512456
349339941
434509952
5493711650
μi46.241.6113.645.8
μ = (46.2 + 41.6 + 113.6 + 45.8) / 4 = 61.8
Квадрат ошибок внутри групп (Square Sum within group):
SSw = ΣiΣj(yij - μi)2 = 1848
Квадрат ошибок между группами (Square Sum between group):
SSb = Σii - μ)2 = 3590.64
Учитывая степени свободы, ожидаемое среднее:
MSw = SSw / a(n-1) = 123.2
MSb = SSb / a-1 = 897.66
Значение Fкрит :
F0 = MSb/MSw = 7.286

Тест Фишера: если значение F0 окажется больше чем значение F λ,4,15, значит фактор оказывает влияние.

Для n = 20 и a = 5, Fλ,n-a,a-1 = Fλ,15,4 = 5,86
Поскольку F0 = 7.286 > 5.86, то принимаем, что введённый фактор оказал влияние на результаты эксперимента.

Двухфакторный

При двухфакторном анализе выдвигаются три гипотезы на проверку:

  • Факторы А и В не оказывают влияния на результат
  • Фактор А не оказывает влияния на результат
  • Фактор B не оказывает влияния на результат

Для проведения двухфакторного анализа необходимо составить группы результатов: несколько измерений для всех значения каждого из факторов, т.е.:

A1A2
B1X1a1,b1...XNa1,b1X1a1,b2...XNa1,b2
B2X1a1,b2...XNa1,b2X1a1,b2...XNa1,b2

Далее подсчитывается среднее значение для каждого значения факторов, т.е. среднее для A1, среднее для В1 и т.д. Затем подсчитывается общее среднее для всех результатов. Зададимся количеством критериев: k = 2 (количество критериев А) и m = 2 (количество критериев В).

T = ΣΣΣxijk
Сумма элементов под влиянием фактора A:
TAi = Σxi·k
Сумма элементов под влиянием фактора B:
TBj = Σx·jk
Сумма элементов под влиянием фактора AB:
TAiBj = Σxij·
SST = Σx2ijk - T2/N
SSA = ΣT2Ai/n·m - T2/N
SSB = ΣT2Bj/n·k - T2/N
SSAB = ΣΣT2AiBj/n - SSA - SSB - T2/N
SSE = ΣΣΣx2ijk - ΣΣT2AiBj/n

SST = SSA + SSB + SSAB + SSE

MSE = SSE/(n-1)·m·k
MSA = SSA/k-1
MSB = SSB/m-1
MSAB = SSAB/(m-1)·(k-1)
Тест "Критерий A не оказывает влияние на результат", ν1 = k-1:
FA = MSA/MSE
Тест "Критерий B не оказывает влияние на результат", ν1 = m-1:
FB = MSB/MSE
Тест "Критерии A и B не оказывают влияние на результат", ν1 = (k-1)(m-1):
Fint = MSAB/MSE

Для каждого F, если F > F α,ν12, то гипотеза отвергается. ν2 = N-mk

Многофакторный

Многофакторный анализ аналогичен двухфакторному - проводятся те же операции, но критерии группируются и итеративно находится влияние каждого из факторов.

С повторными измерениями

Дисперсионный анализ с повторными измерениями озночает, что для каждого критерия производилось несколько замеров случайной величины для получения более точного результата (поскольку в ANOVA) используется внутригрупповая сумма квадратов.

Применение

Дисперсионный анализ применяют в самых различных отраслях науки и производства тогда, когда необходимо изучить зависимость критериев на различие средних значений, при этом сравнивается не среднее значение, а разброс результатов вокруг среднего значения, т.е. дисперсию.

Решение задач

В качестве примера приведём задачу из метрологии. На заводе размещены пять станков, на которых производят валы. Необходимо определить, влияет ли выбор станка или подготовка работника на результат производства. Для анализа производят замеры для каждого станка и работника, в результате получается таблица:

Оператор 1
М1 30.489 30.535 30.454 30.54 30.589 30.48 30.44 30.418 30.332 30.454
М2 30.36 30.844 30.437 30.589 30.441 31.282 31.296 30.693 30.852 30.617
М3 30.365 30.36 30.373 30.315 30.342 30.371 30.323 30.311 30.333 30.362
М4 30.14 30.197 29.805 29.943 29.878 30.246 30.074 30.143 29.934 30.19
М5 30.305 30.3 30.362 30.372 30.357 30.399 30.364 30.397 30.399 30.331
Оператор 2
М1 30.135 30.26 30.23 30.193 30.215 30.14 30.201 30.277 30.276 30.116
М2 30.293 30.231 29.919 30.24 29.894 29.809 30.173 30.048 30.222 30.211
М3 30.42 30.393 30.418 30.48 30.463 30.468 30.436 30.363 30.475 30.399
М4 30.378 30.375 30.362 30.304 30.311 30.319 30.386 30.379 30.368 30.329
М5 30.158 30.232 30.117 30.241 30.192 30.135 30.281 30.195 30.216 30.253

Воспользуемся методом двухфакторного анализа, фактор А - оператор, фактор В - станок. Рассчитаем суммы квадратов, для этого необходимо рассчитать значение среднего для каждой из групп:

TTA1TA2 TB1TB2TB3TB4TB5
3032.662 1519.7331512.929 606.774 608.451 607.77 604.061 605.606
SSA = 0.463
SSB = 0.612
SSAB = 2.526
SSE = 1.616

MSA = 0.463
MSB = 0.153
MSAB = 0.632
MSE = 0.404

FA = 1.146
FB = 0.379
FAB = 1.564

Критические значения для теста Фишера:
Fcrit A = F0.1, 1, 90 = 2.77
Fcrit B = F0.1, 4, 90 = 2.01
Fcrit AB = F0.1, 4, 90 = 2.01

Таблица результатов:

Влияние станка на результат Да 1.146 < 2.77
Влияние квалификации работника на результат Да 0.379 < 2.01
Взаимное влияние квалификации работника и выбора станка на результат Да 1.564 < 2.01

В excel/Open Calc

Для решения дисперсионного анализа в электронной таблице Вам потребуются следующие формулы:

sumproduct Сумма произведений, используется для нахождения суммы квадратов
finv Обратное значение распределения F - критерий Фишера

Таблица для скачивания в форматах ods и xls.

Скачать статью в формате PDF.

Вам понравилась статья? /

Seen: 14 134

Рейтинг: 5 (38 голосов)