k-tree
биология

Дисперсионный анализ

В примерах в данной статье данные генерятся при каждой загрузке страницы. Если Вы хотите посмотреть пример с другими значениями - обновите страницу .

ANOVA

ANOVA в статистике - это мощный инструмент для определения влияния различных групп наблюдений между собой. Дисперсионный анализ был введён Фишером - английским учёным, сделавшим огромный вклад в развитие науки. ANOVA - это акроним от ANalysis Of VAriance (дисперсионный анализ).

Пример

Предположим, Вы хотите эмпирическим методом провести исследование бензина на качество, для этого вы заправляете бак на одной заправке и проезжаете n километров, повторяете такой эксперимент, скажем, пять раз, затем проводите такой же эксперимент, только на другой заправке. У Вас два набора данных - заправка A и заправка B. Разумеется, цифры разбегаются, но всё же есть некоторая зависимость, так вот, что бы определить, влияет ли заправка на расход бензина (или данные не связаны между собой) Вы используете дисперсионный анализ.

Дисперсионный анализ позволяет определить какой из факторов влияет больше, внутригрупповой или межгрупповой. В примере выше Вы сможете определить, насколько влияет на расход бензина выбор заправки. В этом суть дисперсионного анализа: узнать, является ли выбранный фактор значимым для выбранных наблюдений.

В некотором смысле, дисперсионный анализ похож на регрессионный и корреляционный анализы, т.к. позволяет определить влияние переменных друг на друга.

Анализ

В теории, для анализа дисперсии выстраивается простая модель, схожая с изучаемой в анализе временых рядов.

Модель

Модель дисперсионного анализа включает в себя среднее значение, эффект эксперимента и случайную ошибку:

y = μ + τ + ε
τ - эффект эксперимента, ε - случайная ошибка

Однофакторный

Однофакторный дисперсионный анализ рассматривает влияние одного критерия, делается это так: мы проводим два эксперимента, в одном из них включаем дополнительный фактор и анализируем, внёс ли этот фактор изменения. В качестве исходных данных рассмотрим результаты ряда экспериментов:

NE1E2E3E4
150609531
2574713259
338379041
453369660
5416012345
μi47.848107.247.2
μ = (47.8 + 48 + 107.2 + 47.2) / 4 = 62.55
Квадрат ошибок внутри групп (Square Sum within group):
SSw = ΣiΣj(yij - μi)2 = 2856.4
Квадрат ошибок между группами (Square Sum between group):
SSb = Σii - μ)2 = 2658.51
Учитывая степени свободы, ожидаемое среднее:
MSw = SSw / a(n-1) = 190.43
MSb = SSb / a-1 = 664.63
Значение Fкрит :
F0 = MSb/MSw = 3.49

Тест Фишера: если значение F0 окажется больше чем значение F λ,4,15, значит фактор оказывает влияние.

Для n = 20 и a = 5, Fλ,n-a,a-1 = Fλ,15,4 = 5,86
Поскольку F0 = 3.49 < 5.86, то принимаем, что введённый фактор не оказал влияния на результаты эксперимента.

Двухфакторный

При двухфакторном анализе выдвигаются три гипотезы на проверку:

  • Факторы А и В не оказывают влияния на результат
  • Фактор А не оказывает влияния на результат
  • Фактор B не оказывает влияния на результат

Для проведения двухфакторного анализа необходимо составить группы результатов: несколько измерений для всех значения каждого из факторов, т.е.:

A1A2
B1X1a1,b1...XNa1,b1X1a1,b2...XNa1,b2
B2X1a1,b2...XNa1,b2X1a1,b2...XNa1,b2

Далее подсчитывается среднее значение для каждого значения факторов, т.е. среднее для A1, среднее для В1 и т.д. Затем подсчитывается общее среднее для всех результатов. Зададимся количеством критериев: k = 2 (количество критериев А) и m = 2 (количество критериев В).

T = ΣΣΣxijk
Сумма элементов под влиянием фактора A:
TAi = Σxi·k
Сумма элементов под влиянием фактора B:
TBj = Σx·jk
Сумма элементов под влиянием фактора AB:
TAiBj = Σxij·
SST = Σx2ijk - T2/N
SSA = ΣT2Ai/n·m - T2/N
SSB = ΣT2Bj/n·k - T2/N
SSAB = ΣΣT2AiBj/n - SSA - SSB - T2/N
SSE = ΣΣΣx2ijk - ΣΣT2AiBj/n

SST = SSA + SSB + SSAB + SSE

MSE = SSE/(n-1)·m·k
MSA = SSA/k-1
MSB = SSB/m-1
MSAB = SSAB/(m-1)·(k-1)
Тест "Критерий A не оказывает влияние на результат", ν1 = k-1:
FA = MSA/MSE
Тест "Критерий B не оказывает влияние на результат", ν1 = m-1:
FB = MSB/MSE
Тест "Критерии A и B не оказывают влияние на результат", ν1 = (k-1)(m-1):
Fint = MSAB/MSE

Для каждого F, если F > F α,ν12, то гипотеза отвергается. ν2 = N-mk

Многофакторный

Многофакторный анализ аналогичен двухфакторному - проводятся те же операции, но критерии группируются и итеративно находится влияние каждого из факторов.

С повторными измерениями

Дисперсионный анализ с повторными измерениями озночает, что для каждого критерия производилось несколько замеров случайной величины для получения более точного результата (поскольку в ANOVA) используется внутригрупповая сумма квадратов.

Применение

Дисперсионный анализ применяют в самых различных отраслях науки и производства тогда, когда необходимо изучить зависимость критериев на различие средних значений, при этом сравнивается не среднее значение, а разброс результатов вокруг среднего значения, т.е. дисперсию.

Решение задач

В качестве примера приведём задачу из метрологии. На заводе размещены пять станков, на которых производят валы. Необходимо определить, влияет ли выбор станка или подготовка работника на результат производства. Для анализа производят замеры для каждого станка и работника, в результате получается таблица:

Оператор 1
М1 30.846 30.759 30.675 30.806 30.784 30.723 30.648 30.804 30.59 30.383
М2 30.304 30.366 30.465 30.438 30.376 30.36 30.351 30.5 30.426 30.37
М3 30.377 30.305 30.387 30.322 30.302 30.35 30.3 30.395 30.357 30.343
М4 30.336 30.315 30.308 30.365 30.349 30.367 30.306 30.387 30.354 30.399
М5 30.697 30.669 30.614 30.687 30.639 30.561 30.363 30.69 30.405 30.6
Оператор 2
М1 29.932 30.159 29.985 30.279 30.232 30.099 29.867 30.029 30.231 29.868
М2 30.352 30.327 30.376 30.326 30.359 30.334 30.385 30.318 30.384 30.394
М3 30.347 30.341 30.302 30.367 30.366 30.323 30.319 30.312 30.304 30.313
М4 30.92 31.064 30.378 30.553 30.888 30.303 30.801 30.694 30.308 30.736
М5 30.374 30.312 30.342 30.326 30.36 30.391 30.327 30.335 30.325 30.38

Воспользуемся методом двухфакторного анализа, фактор А - оператор, фактор В - станок. Рассчитаем суммы квадратов, для этого необходимо рассчитать значение среднего для каждой из групп:

TTA1TA2 TB1TB2TB3TB4TB5
3041.47 1523.8231517.647 607.699 607.511 606.732 610.131 609.397
SSA = 0.381
SSB = 0.4
SSAB = 2.436
SSE = 1.235

MSA = 0.381
MSB = 0.1
MSAB = 0.609
MSE = 0.309

FA = 1.233
FB = 0.324
FAB = 1.971

Критические значения для теста Фишера:
Fcrit A = F0.1, 1, 90 = 2.77
Fcrit B = F0.1, 4, 90 = 2.01
Fcrit AB = F0.1, 4, 90 = 2.01

Таблица результатов:

Влияние станка на результат Да 1.233 < 2.77
Влияние квалификации работника на результат Да 0.324 < 2.01
Взаимное влияние квалификации работника и выбора станка на результат Да 1.971 < 2.01

В excel/Open Calc

Для решения дисперсионного анализа в электронной таблице Вам потребуются следующие формулы:

sumproduct Сумма произведений, используется для нахождения суммы квадратов
finv Обратное значение распределения F - критерий Фишера

Таблица для скачивания в форматах ods и xls.

Скачать статью в формате PDF.

Вам понравилась статья? Да / Нет

Просмотров: 3 349

5 14