k-tree
биология
В примерах в данной статье данные генерятся при каждой загрузке страницы. Если Вы хотите посмотреть пример с другими значениями - обновите страницу .
Параметры дискретного закона распределения

Параметры дискретного закона распределения

В статье описано как найти среднее значение и стандартное отклонение. Вы узнаете, что такое квантиль и каких он бывает видов, а также, как построить доверительный интервал.

Математическое описание

Смотря на закон распределения, мы можем понять, какова вероятность того или иного события, можем сказать, какова вероятность, что произойдёт группа событий, а в этой статье мы рассмотрим, как наши выводы "на глаз" перевести в математически обоснованное утверждение.

Крайне важное определение: математическое ожидание - это площадь под графиком распределения. Если мы говорим о дискретном распределении - это сумма событий умноженных на соответсвующие вероятности, также известно как момент:

(2)  E(X) = Σ(pi•Xi) E - от английского слова Expected (ожидание)
Для математического ожидания справедливы равенства:

(3)  E(X + Y) = E(X) + E(Y)
(4)  E(X•Y) = E(X) • E(Y)

Момент степени k:

(5)  νk = E(Xk)

Центральный момент степени k:

(6)  μk = E[X - E(X)]k

Среднее значение

Среднее значение (μ) закона распределения - это математическое ожидание случайной величины (случайная величина - это событие), например, сколько в среднем посетителей заходит в магазин в час:

Кол-во посетителей0123456
Количество наблюдений8708178684253
Таблица 1. Количество посетителей в час
График 1. Количество посетителей в час

Чтобы найти среднее значение всех результатов необходимо сложить всё вместе и разделить на количество результатов:

μ = (8 • 0 + 70 • 1 + 81 • 2 + 78 • 3 + 68 • 4 + 42 • 5 + 53 • 6) / 400 = 1266/400 = 3.17

То же самое мы можем проделать используя формулу 2:

μ = M(X) = Σ(Xi•pi) = 0 • 0.02 + 1 • 0.18 + 2 • 0.2 + 3 • 0.2 + 4 • 0.17 + 5 • 0.11 + 6 • 0.13 = 3.17 Момент первой степени, формула (5)

Собственно, формула 2 представляет собой среднее арифметическое всех значений
Итог: в среднем, 3.17 посетителя в час

Количество посетителей0123456
Вероятность (%)217.520.319.51710.513.3
Таблица 2. Закон распределения количества посетителей

Отклонение от среднего

Посмотрите на это распределение, можно предположить, что в среднем случайная величина равна 100±5, поскольку кажется, что таких значений несравнимо больше чем тех, что меньше 95 или больше 105:

График 2. График функции вероятности. Распределение ≈ 100±5

Среднее значение по формуле (2): μ = 99.95, но как посчитать, насколько далеко все значения находятся от среднего? Вам должна быть знакома запись 100±5. Что бы получить это значение ±, нам необходимо определить диапазон значений вокруг среднего. И мы могли бы использовать в качестве меры удалённости "разность" между средним и случайными величинами:

(7) xi - μ

но сумма таких расстояний, а следовательно и любое производное от этого числа, будет равно нулю, поэтому в качестве меры выбрали квадрат разниц между величинами и средним значением:

(8) (xi - μ)2

Соответственно, среднее значение удалённости - это математическое ожидание квадратов удалённости:

(9) σ2 = E[(X - E(X))2] Поскольку вероятности любой удалённости равносильны - вероятность каждого из них - 1/n, откуда: (10) σ2 = E[(X - E(X))2] = ∑[(Xi - μ)2]/n Она же формула центрального момента (6) второй степени

σ возведена в квадрат, поскольку вместо расстояний мы взяли квадрат расстояний. σ2 называется дисперсией. Корень из дисперсии называется средним квадратическим отклонением, или среднеквадратическим отклоненим, и его используют в качестве меры разброса:

(11) μ±σ
(12) σ = √(σ2) = √[∑[(Xi - μ)2]/n]

Возвращаясь к примеру, посчитаем среднеквадратическое отклонение для графика 2:

σ = √(∑(x-μ)2/n) = √{[(90 - 99.95)2 + (91 - 99.95)2 + (92 - 99.95)2 + (93 - 99.95)2 + (94 - 99.95)2 + (95 - 99.95)2 + (96 - 99.95)2 + (97 - 99.95)2 + (98 - 99.95)2 + (99 - 99.95)2 + (100 - 99.95)2 + (101 - 99.95)2 + (102 - 99.95)2 + (103 - 99.95)2 + (104 - 99.95)2 + (105 - 99.95)2 + (106 - 99.95)2 + (107 - 99.95)2 + (108 - 99.95)2 + (109 - 99.95)2 + (110 - 99.95)2]/21} = 6.06

Итак, для графика 2 мы получили:

X = 99.95±6.06 ≈ 100±6 , что немного отличается от полученного "на глаз"

Квантиль

График 3. Функция распределения. Медиана

График 4. Функция распределения. 4-квантиль или квартиль

График 5. Функция распределения. 0.34-квантиль

Для анализа функции распределения ввели понятие квантиль. Квантиль - это случайная величина при заданном уровне вероятности, т.е.: квантиль для уровня вероятности 50% - это случайная величина на графике плотности вероятности, которая имеет вероятность 50%. На примере с графиком 3, квантиль уровня 0.5 = 99 (ближайшее значение, поскольку распределение дискретно и события со значением 99.3 просто не существует)

  • 2-квантиль - медиана
  • 4-квантиль - квартиль
  • 10-квантиль - дециль
  • 100-квантиль - перцентиль

То есть, если мы говорим о дециле (10-квантиле), то это означает, что мы разбили график на 10 частей, что соответствует девяти линяям, и для каждого дециля нашли значение случайной величины.

Также, используется обозначение x-квантиль, где х - дробное число, например, 0.34-квантиль, такая запись означает значение случайной величины при p = 0.34.

Для дискретного распределения квантиль необходимо выбирать следующим образом: квантиль гарантирует вероятность, поэтому, если рассчитанный квантиль не совпадает с одним и значений, необходимо выбирать меньшее значение.

Построение интервалов

Квантили используют для построения доверительных интервалов, которые необходимы для исследования статистики не одного конкретного события (например, интерес - случайное число = 98), а для группы событий (например, интерес - случайное число между 96 и 99). Доверительный интервал бывает двух видов: односторонний и двусторонний. Параметр доверительного интервала - уровень доверия. Уровень доверия означает процент событий, которые можно считать успешными.

Двусторонний доверительный интервал

Двусторонний доверительный интервал строится следующим образом: мы задаёмся уровнем значимости, например, 10%, и выделяем область на графике так, что 90% всех событий попадут в эту область. Поскольку интервал двусторонний, то мы отсекаем по 5% с каждой стороны, т.е. мы ищем 5й перцентиль, 95й перцентиль и значения случайной величины между ними будут являться доверительной областью, значения за пределами доверительной области называются "критическая область"

График 6. Плотность вероятности

График 7. Функция распределения с 5 и 95 перцентилями. Цветом выделен доверительный интервал с уровнем доверия 0.9
График 8. Функция вероятности и двусторонний доверительный интервал с уровнем доверия 90%

Доверительный интервал

Левосторонний и правосторонний доверительные интервалы строятся аналогично двустороннему: для левостороннего интервала мы находим перцентиль уровня ['один' минус 'уровень значимости']. Таким образом, для построения доверительного левостороннего интервала уровня значимости 4% нам необходимо найти четвёртый перцентиль и всё, что справа - доверительный интервал, всё что слева - критическая область.

График 9. Левосторонний доверительный интервал с уровнем значимости 4%. Заливкой выделен доверительный интервал

График 10. Правосторонний доверительный интервал с уровнем значимости 4%. Заливкой выделен доверительный интервал

Итого

Среднее значение - математическое ожидание случайной величины, находится по формуле:

μ = E(X) = Σ(pi•Xi)

Среднеквадратичное отклонение - математическое ожидание удалённости значений от среднего, находится по формуле:

σ = √(σ2) = √[∑[(Xi - μ)2]/n]

n-квантиль - разделение функции распределения на n равных отрезков, основные типы квантилей:

  • 2-квантиль - медиана
  • 4-квантиль - квартили
  • 10-квантиль - децили
  • 100-квантиль - перцентили

Доверительный интервал уровня α - участок функции вероятности, содержащий α всех возможных значений. Двусторонний доверительный интервал строится отсечением (1-α)/2 справа и слева. Левосторонний и правосторонний доверительные интервалы строятся отсечением области (1-α) слева и справа соответственно.

Построить ряд распределения

Предположим, мы имеем 100 значений и все разные, например: масса тела Сомалийских пиратов. Такой набор данных обрабатывать неудобно, мы даже не можем представить их на обычном графике. Поэтому нам необходимо категоризировать имеющиеся данные и для этого мы делаем следующее:

Запишем наши данные в таблицу:

97 128 73 130 90 72 74 60 73 77
78 74 102 97 63 64 78 113 77 122
89 94 72 71 91 129 91 97 135 75
62 74 88 131 87 84 100 129 104 65
111 73 126 117 104 108 119 102 133 82
129 89 101 108 74 123 71 119 97 114
124 104 73 65 68 88 74 92 131 115
129 64 81 72 108 69 84 94 118 85
62 80 123 101 106 93 60 104 90 117
122 116 78 73 74 76 76 71 123 80
Таблица 3. Вес сомалийских пиратов

Данные разобьём на группы, для начала предлагаю разбить на семь интервалов:

Узнаём максимальное и минимальное значения, вычитаем их друг из друга и делим на количество интервалов - получили отрезки:
Максимальное значение: 135
Минимальное значение: 60
Разница: 135 - 60 = 75
Длина интервала: 75 / 7 = 10.72

Теперь посчитаем количество пиратов (весов, я имею ввиду) в каждом интервале:

# Интервал Количество элементов
1. 60 - 70.72 11
2. 70.72 - 81.44 28
3. 81.44 - 92.16 14
4. 92.16 - 102.88 12
5. 102.88 - 113.6 10
6. 113.6 - 124.32 14
7. 124.32 - 135.04 11
Таблица 4. Количество элементов в интервалах

Вуа-ля, наше распределение на графике:

График 11. Ряд распределения массы тела сомалийских пиратов

Бонус

Интервалы лучше брать целыми числами, поэтому, если с выбранным количеством интервалов размер выходит нецелым, то можно раздвинуть диапазон значений, пример:

Значение интервала равно 10.72, число не является целым, поэтому отодвигаем верхнюю границу:
Остаток от деления: [(135 - 60) / 7] = 5
Подвинуть на: 2
Новый диапазон: [60;137]

Диапазон можно двигать как вверх, так и вниз, но лучше в обе стороны.

Совет

Принято делить распределение на 7-8 интервалов, но в каждой конкретной ситуации Вы можете выбрать отличное количество интервалов, впрочем, как и сделать их различной длины.

Список параметров

Итак, вот список основных параметров дискретного закона распределения:

НазваниеСимволФормула
Математическое ожидание (среднее)E(X)Σ(pi•Xi)
Центральный момент
(среднеквадратичное отклонение)
σxσ = √(σ2) = √[∑[(Xi - μ)2]/n]
Длина интервалаRmax(x) - min(x)
Модаmomax P(x = mo)
1й квантиль-F(x) = 0.25
МедианаmeF(x) = 0.5
Дециль-F(x) = 0.1
Таблица 5. Основные параметры дискретного закона распределения

Шаблон гистограммы в OpenOffice Calc

Файл histogram_mock.ods содержит шаблон построения гистограммы.


Вам понравилась статья? Да / Нет

Просмотров: 2 708

5 4